INCH-POUND
MIL-M-38510/327B
15 September 2003
SUPERSEDING
MIL-M-38510/327A
10 December 1982

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR, LOW-POWER SCHOTTKY TTL, COUNTERS, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, low-power Schottky TTL, binary and decade counters microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
 - 1.2 Part number. The part number should be in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types should be as follows:

Device type	<u>Circuit</u>
01	Dual decade counter with A and B inputs
02	Dual 4 bit binary counter
03	Dual decade counter with clear and set-to-nine

- 1.2.2 Device class. The device class should be the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 Case outlines. The case outlines should be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Α	GDFP5-F14 or CDFP6-F14	14	Flat pack
В	GDFP4-14	14	Flat pack
С	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
2	CQCC1-N20	20	Square leadless chip carrier

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43216-5000, by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

AMSC N/A DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

1.3 Absolute maximum ratings.

Supply voltage range	-0.5 V to 7.0 V
Input voltage range	-1.5 V dc at -18 mA to 5.5 V dc
Storage temperature range	
Maximum power dissipation (P _D) 1/	143 mW dc
Lead temperature (soldering, 10 seconds)	300°C
Thermal resistance, junction to case (θ_{JC}):	
Cases A, B, C, D, E, F, and 2	(See MIL-STD-1835)
Junction temperature (T _J) <u>2</u> /	+175°C

1.4 Recommended operating conditions.

Supply voltage (V _{CC})	
Minimum high level input voltage (V _{IH})	2.0 V
Maximum low level input voltage (V _{IL})	0.7 V
Case operating temperature range (T _C)	-55°C to +125°C
Normalized fanout (each output)	10 maximum
Width of input count pulse, t _{P(IN)} :	
Input A, clock	20 ns minimum
Input B	
Width of clear pulse	20 ns minimum
Input clock frequency (F _{MAX}):	
Input A (Types 01, 02, 03)	0 to 25 MHz
Input B (Type 01)	0 to 12.5 MHz
Setup time (Types 01 and 02)	
Clear inactive state setup time	
(time for clear \downarrow to A or B input \downarrow)	35 ns minimum

2. APPLICABLE DOCUMENTS

2.1 Government documents.

2.1.1 <u>Specifications and Standards.</u> The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents shall be those listed in the issue of the Departments of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Unless otherwise indicated, copies of the above specifications and standards are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

 $[\]underline{1}$ / Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).

^{2/} Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

2.2 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
 - 3.3.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.3.2 Logic diagrams. The logic diagrams shall be specified on figure 2.
 - 3.3.3 Truth table. The truth table shall be as specified on figure 3.
- 3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
 - 3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 12 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.
 - 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
 - 4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.
 - 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 <u>Methods of inspection.</u> Methods of inspection shall be specified and as follows:
- 4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Cor	Conditions		Lin	nits	Unit
		-55°C ≤ ⁻	T _C ≤ +125°C	type	Min	Max	
High level output voltage	V _{OH}	$V_{CC} = 4.5 \text{ V}, V_{IH} =$: 2.0 V,	All	2.5		V
		$V_{IL} = 0.7 \text{ V}, I_{OH} =$	-400 μΑ				
Low level output voltage	V_{OL}	$V_{CC} = 4.5 \text{ V}, V_{IL} =$	0.7 V,	All		0.4	V
		$V_{IH} = 2.0 \text{ V}, I_{OL} = 100 \text{ V}$	4 mA				
Input clamp voltage	V_{IC}	$V_{CC} = 4.5 \text{ V}, I_{IN} =$	-18 mA,	All		-1.5	V
		$T_C = +25^{\circ}C$					
High level input current at clear or set to 9 inputs	I _{IH1}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$: 2.7 V	All		20	μΑ
High level input current	I _{IH4}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$: 5.5 V	All		100	μΑ
at clear or set to 9 inputs							
High level input current	I _{IH2}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$: 2.7 V	All		100	μΑ
at input A or clock							·
High level input current	I _{IH5}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$: 5.5 V	01, 03		200	μΑ
at input A or clock				02		400	
High level input current	I_{IH3}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$: 2.7 V	01		200	μΑ
at input B							
High level input current	I _{IH6}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$: 5.5 V	01		400	μΑ
at input B							
Low level input current	I _{IL1}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$: 0.4 V	01, 02	-120	-400	μΑ
at clear or set to 9 inputs				03	-135	-400	
Low level input current	I _{IL2}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$: 0.4 V	All	35	-2.4	mA
at input A							
Low level input current	I_{IL3}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$: 0.4 V	01	60	-3.2	mA
at input B							
Short circuit output current	I _{OS}	$V_{CC} = 5.5 \text{ V} \frac{1}{}$		All	-15	-100	mA
Supply current	I _{CC}	$V_{CC} = 5.5 \text{ V}, V_{IN} =$: 0 V	All		26	mA
Maximum input clock	F _{MAX1}	V _{CC} = 5.0 V, C _L =	50 pF.	All	25		MHz
frequency, A or CLK	100 001	$R_L = 2 k\Omega$,				
Maximum input clock	F _{MAX2}	$V_{CC} = 5.0 \text{ V}, C_L =$	50 pF.	01	12.5		MHz
frequency, B	10000	$R_L = 2 k\Omega$, , , , , , , , , , , , , , , , , , ,				
Propagation delay time,	t _{PLH1}	$V_{CC} = 5.0 \text{ V},$	A to QC	01	2	84	ns
low-to-high		$C_L = 50 \text{ pF},$	A to QA	02	2	33	1
		$R_L = 2 k\Omega$	CLK to QA	03	2	33	1
Propagation delay time,	t _{PHL1}	$V_{CC} = 5.0 \text{ V},$	A to QC	01	2	84	ns
high to low		$C_L = 50 \text{ pF},$	A to QA	02	2	33	1
		$R_L = 2 k\Omega$	CLK to G	03	2	33	1

 $[\]underline{1}/$ Not more than one output should be shorted at a time.

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Cond	itions	Device	Lin	nits	Unit
		-55°C ≤ T _C	$-55^{\circ}C \le T_C \le +125^{\circ}C$		Min	Max	
Propagation delay time,	t _{PLH2}	$V_{CC} = 5.0 \text{ V},$	B to QD	01	2	34	ns
low-to-high		$C_L = 50 \text{ pF},$	A to QD	02	2	93	
		$R_L = 2 k\Omega$	CLK to QA	03	2	77	
Propagation delay time,	t _{PHL2}	$V_{CC} = 5.0 \text{ V},$	B to QD	01	2	34	ns
high to low		$C_L = 50 \text{ pF},$	A to QD	02	2	93	
		$R_L = 2 k\Omega$	CLK to QC	03	2	77	
Propagation delay time,	t _{PHL3}	V _{CC} = 5.0 V		All	2	56	ns
high-to-low level,		$C_L = 50 \text{ pF}, R_L = 2 \text{ I}$	(Ω				
CLR to Q							
Propagation delay time,	t _{PLH4}	$V_{CC} = 5.0 \text{ V}$		03	2	57	ns
low to high level, set to 9		$C_L = 50 \text{ pF}, R_L = 2 \text{ I}$	Ω				
to QA							
Propagation delay time,	t _{PHL4}	$V_{CC} = 5.0 \text{ V}$		03	2	53	ns
high to low level, set to 9		$C_L = 50 \text{ pF}, R_L = 2 \text{ I}$	Ω				
to QB							

TABLE II. Electrical test requirements.

	Subgroups	(see table III)
MIL-PRF-38535	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9, 10, 11	1*, 2, 3, 7, 9
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 9, 10, 11
Group B electrical test parameters when using the method 5005 QCI option	1, 2, 3, 7, 8 9, 10, 11	N/A
Group C end-point electrical parameters	1, 2, 3, 7, 8 9, 10, 11	1, 2, 3
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

^{*}PDA applies to subgroup 1.

	Terminal symbol					
	Device	Device type 01		Device type 02		type 03
Terminal	Case	Case	Case	Case	Case	Case
number	E, F	2	A, B, C, D	2	E, F	2
1	1A	NC	1A	NC	1CLK	NC
2	1CLR	1A	1CLR	1A	1CLR	1CLK
3	1QA	1CLR	1QA	1CLR	1QA	1CLR
4	1B	1QA	1QB	1QA	1 SET T0 9	1QA
5	1QB	1B	1QC	NC	1QB	1 SET T0 9
6	1QC	NC	1QD	1QB	1QC	NC
7	1QD	1QB	GND	NC	1QD	1QB
8	GND	1QC	2QD	1QC	GND	1QC
9	2QD	1QD	2QC	1QD	2QD	1QD
10	2QC	GND	2QB	GND	2QC	GND
11	2QB	NC	2QA	NC	2QB	NC
12	2B	2QD	2CLR	2QD	2 SET TO 9	2QD
13	2QA	2QC	2A	2QC	2QA	2QC
14	2CLR	2QB	V _{cc}	2QB	2CLR	2QB
15	2A	2B		NC	2CLK	2 SET TO 9
16	V_{CC}	NC		2QA	V _{CC}	NC
17		2QA		NC		2QA
18		2CLR		2CLR		2CLR
19		2A		2A		2CLK
20		Vcc		Vcc		Vcc

FIGURE 1. <u>Terminal connections</u>.

DEVICE TYPE 01

FIGURE 2. Logic diagrams (each counter).

DEVICE TYPE 02

FIGURE 2. Logic diagrams (each counter) - Continued.

FIGURE 2. Logic diagrams (each counter) - Continued.

Device types 01

EACH COUNTER

BCD COUNT SEQUENCE

(See Note A)

	OUTPUT					
COUNT	QD	QC	QB	QA		
0	L	L	L	L		
1	L	L	L	Н		
2	L	L	Η	Ш		
3	Ш	Ш	Ι	Ι		
4	L	Η	L	Ш		
5	L	Η	L	Η		
6	L	Η	Η	Ш		
7	L	Н	Н	Н		
8	Н	L	L	L		
9	Н	L	L	Н		

BI-QUINARY (5-2) (See Note B)

OUTPUT COUNT QΑ QD QC QB 0 L Н 1 L Н L Н Н 3 L 4 L Н L L 5 Н L L L 6 Н L L Н 7 Н L Н L 8 Н L Н Н 9 Н Н L

NOTES:

- A. Output QA is connected to input B for BCD count.B. Output QD is connected to input A for bi-quinary count.

Device type 02

EACH COUNTER COUNT SEQUENCE

	OUTPUT				
COUNT	QD	Q	QB	QA	
0	L	L	L	L	
1	L	L	L	Н	
2	L	L	Н	L	
3	L	L	Η	Н	
4	L	Η	L	L	
5	L	Η	L	Н	
6	L	Н	Н	L	
7	L	Η	Η	Н	
8	Η	L	L	L	
9	Η	L	L	Н	
10	Н	L	Н	L	
11	Η	L	Η	Н	
12	Н	Н	L	L	
13	Ι	Ι	L	Н	
14	Н	Н	Н	L	
15	Н	Н	Н	Н	

FIGURE 3. Truth tables.

Device type 03

BCD COUNT SEQUENCE (EACH COUNTER)

	OUTPUT						
COUNT	QD	QD QC QB QA					
0	Ш	L	Ш	L			
1	L	L	L	Ι			
2	Ш	L	Ι	L			
3	Ш	L	Ι	Ι			
4	L	Η	L	L			
5	L	Н	L	Н			
6	L	Η	Η	L			
7	L	Н	Н	Н			
8	Η	L	L	L			
9	Η	L	L	Н			

CLEAR/SET TO 9 FUNCTION TABLE (EACH COUNTER)

INPUTS		OUTPUTS			
CLEAR	SET TO 9	QA	QB	QC	QD
Н	L	L	L	L	L
L	Н	Н	L	L	Н
L	L	COUNT			•

H = high level, L = low level

FIGURE 3. <u>Truth tables</u> - Continued.

TEST CIRCUIT

NOTES:

- 1. The pulse generator has the following characteristics: $V_{gen} = 3 \text{ V}$, $t_r \le 15 \text{ ns}$, $t_f \le 6 \text{ ns}$, $t_p = .5 \mu \text{s}$, $PRR \le 1 \text{ MHz}$, $Zout \approx 50$, $t_{p(clear)} \ge 20 \text{ ns}$, $t_{p(clear)} \ge 35 \text{ ns}$ for device 02.
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground teminal.
- 5. F maximum: $t_r = t_f \le 6$ ns.

CLEAR VOLTAGE WAVEFORMS TYPES 01 AND 02

FIGURE 4. Switching time test circuit and waveforms for device types 01 and 02.

COUNT VOLTAGE WAVEFORMS, TYPE 01

FIGURE 4. Switching time test circuit and waveforms for device types 01 and 02 - Continued.

NOTES:

- 1. The pulse generator has the following characteristics: V_{gen} = 3 V, $t_r \le$ 15 ns, $t_f \le$ 6 ns, t_p = .5 μ s, PRR \le 1 MHz, Zout \approx 50, $t_p(clear) \ge$ 20 ns.
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground teminal.
- 5. F maximum: $t_f = t_f \le 6$ ns.

FIGURE 5. Switching time test circuit and waveforms for device types 03.

COUNT VOLTAGE WAVEFORMS

FIGURE 5. Switching time test circuit and waveforms for device types 03 - Continued.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V:

		Onit		>				=				=		-				=							=	/9	=	-	=	=		μĄ	=						=	-		=		mA	=			=	=	=		-	
-		Ω	Max									0.4	=	-	=	=	-	-		-1.5	=	-	=	=	=	/9		=	=	=	=	20	100	200	20	100	200	100	200	400	100	200	400	-100		-	-	-	-		= 00	56	
		Limits	Min	2.5	-	=			=		-															/9		=	=		=													-15			=	=	-	н	=		
		Measured terminal		1QA	1QB	1QC	1QD	2QA	2QB	2QC	2QD	10A	1QB	1QC	1QD	20A	2QB	2QC	2QD	1A	1CLR	18	2B	2CLR	2A	1CLR	1A	18	2CLR	2A	2B	1CLR	1A	1B	2CLR	2A	2B	1CLR	1A	1B	2CLR	2A	2B	1QA	1QB	1QC	1QD	2QA	2QB	2QC	2QD	Vcc	
91	2	20	Vcc	4.5 V	=	=		н	=			=	=	=		=	=	=	н	=	=	=	=	=	=	5.5 V			=	=	=	=	=	=				= :	=			=	=	=	н	=	=	=		н		=	
٦,	2	19	2A					1/																	-18 mA					0.4 V					0 = 3.4	2.7 V						5.5 V						1/				GND	
n).	<u>.</u>	18	2CLR					2/		-						2.0 V	-	-	=					-18 mA					0.4 V	GND	GND				2.7 V						5.5 V							2/	-			-	
lerminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).	2	17	2QA					-0.4 mA								2/																																GND				_	
\ ≤ 0.7 V	2	15	2B						1/	3/	/4												-18 mA								0.4 V						2.7 V						5.5 V						7	3/	4/	GND	
U V; IOW	=	41	2QB						-0.4 mA								4 mA																																GND		_	_	
.∠ ≤ Z.	2	13	2QC						-	-0.4 mA								4 mA																																GND	-	_	
nay be r	0	12	2QD								-0.4 mA								4 mA																																GND		
jnated n	.	10	GND	GND				н)-		=	=	=	=	=	-	"	=	=	=	=	=	=				=		=		=	=				= :	=			-	=			=	=	=	=	н		=	
ot design	-	6	1QD				-0.4 mA								4 mA																																GND						re omitted
s (pins r	•	ω	1QC			-0.4 mA	-							4 mA																																GND						_	/ _{IC} tests a
ondition:	,	7	1QB		-0.4 mA								4 mA																																GND							_	25°C and 7
minal co	+	2	1B			3/	4/															-18 mA						0.4 V						2.7 V						5.5 V					1/	%	/4						pt $T_c = +1$
- ler	,	4	1QA	-0.4 mA								2/	•																															GND								GND	up 1, exce
0	١	က	α.	H		-						2.0 V	=	=	=						-18 mA					0.4 V	GND	GND				2.7 V						5.5 \						2/			=					7/	as subgro
-	-	2	1A	1/																-18 mA	-						0.4 V						2.7 V					:	5.5 V					1/								GND	and limits
Cases	Е, Т	Case 2	Test no.	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15				19	20	21	22	23	24	25	56	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	Same tests, terminal conditions, and limits as subgroup 1, except $T_C = +125^{\circ}C$ and V_{1C} tests are omitted. Same tests terminal conditions and limits as subtraind a except $T_C = +55^{\circ}C$ and V_{1C} tests are omitted
	MIL-STD-	883 method		3006		=	=	-		=		3007	-	=	-	-	-	-			<u> </u>	1	<u> </u>	<u> </u>	1	3009	=	=	=	=	=	3010	=	=		.		= :				-	=	3011	-		-	=	=	-	=	3005	s, terminal
	Σ	Symbol		V _{он}								Voi	3							Vic	2					IL1	1112	113	111	7117	113	_ ⊞	I _{H2}	HZ	Ξ.	윌.	H3	¥	12	<u></u>	I.F	IH5	£ -	sol							+	၁၁၂	Same test:
		Subgroup		1	rc = 25°C							<u> </u>								<u> </u>						1			ļ		Į		1						1				Į								1		2 8

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0~\text{V}$; low $\leq 0.7~\text{V}$; or open).

MIL-STD- Eastern Case 2 3 4 5 7 8 9	S S S S S S S S S S	10B 10C 8 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 8 8 7 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8	100			2	1	2 L Q I I	SCR 18 19 19 19 19 19 19 19 19 19 19 19 19 19	2 6 7 4 4 9 = = = = =	20 20 20 20 E	Measured terminal	Limits Min Max	Unit
R83 Case 2 3 4 method 2 1 1 1 1 1 1 1 1 1 1	SSISS AT T T T T T T T T T T T T T T T T T	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1ΔD 1ΔD 1	 					 	19 A A A B = = = = = = = = = = = = = = = =	20 / 000 / 10	Measured	iii H	Chit
Test no.	10 10 10 10 10 10 10 10	2B 10C	100 L L H H H H H H H H H H H H H H H H H H	╎┤┤╎╎╎╎╎╎		 			 	ZA A A B = = = = = = = = = = = = = = = =	20°C 5.0 V			
1014 50 8/	Siss at T ₀ = 1	7	H H H H H H H H H H H H H H H H H H H	Qg					<	<	2.0 \		⁄бI	
55 B " " " " 55 5 5 5 5 5 5 5 5 5 5 5 5	8988 at 7	28°C and C:		Q.	· · · · · · · · · · · · = = = = - · · ·					< M = = = = =	= =			
52 B " "	B	25°C and To			· · · · · · · · · · · · · · · · · · ·					ω = = = =	=			
53	SSIS 22 - 8 B A B A B A B A B A B A B A B A B A B	25°C and T _C :								= = = =				
54 " B " " 55 " " " " 55 5 " " " 1	Siss at T ₀ = 1 B A B B B A B B B A B B B A B	H H H H H H H H H H H H H H H H H		Q				+++++++++++++++++++++++++++++++++++++++	α = = = = = = = = = = =		=			
55 " " " " " " " " " " " " " " " " " "	S88 at 7		= = = = = = = = = = = = = = = = = = =							- - -	=			
56 " " " " " " 55 59 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		25°C and To	H H								=			
57	B	72°C and TC = H	= H H =								=			
198 198	Sels at T _C = 1 B A A B B A B B B A B B B B B B B B B	28°C and T _C :	= - H H H H =								-			
69 " " " " " 60 1 1 1 1 1 1 1 1 1	B B B B B B B B B B B B B B B B B B B	25°C and T _C = 1 = 1 = 25°C and T _C = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	= = T T T = = 55°.	QN					= = = = = =		-			
60	A A B B A A B B B B B B B B B B B B B B	25°C and T _C = " " " " " " " " " " " " " " " " " "	= - H H H = -55°C.		- エエ니				= = = = =		=			
61	Best and The state of the state	25° C and To	= -55°C.	OND	포포니: : ·				= = = = =		-			
62 " " " " " " " " " " " " " " " " " " "	A B B B Sts at T _C = 11	25°C and T _C .	= -55°C.	= = = = QN =	T		< M = =		= = = =		=			
63	B = = BSts at T _C = +1,	25°C and T _C =	= -55°C.	= = = QND	_==	= = =	ω = =		= = =	=	=			
64	" " stsa at T _C = 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	25°C and T _C =	= -55°C.	= = QN =	= =	= =				=	=			
tests, terminal conditions, and limits as for subgroup 7 te 3003 66 10/ IN GND OUT Fig. 4 67 10/ GND	asts at T _C = +12	25°C and T _C =	= -55°C.	= QN =	-	=	-		-	4	-			
tests, terminal conditions, and limits as for subgroup 7 te 3003 66 10/ IN GND OUT Fig. 4 67 10/ GND GND	ests at T _C = +11	25°C and T _C =	= -55°C.	GND =						В	=			
3003 66 10/ IN GND OUT Fig. 4 67 10/ GND	<u>z</u>		Ē	GND =										
Fig. 4 67 10/ - 68 10/ - 69 10/ - 70 IN 71 IN 73 IN	Z		Ē	= :							5.0 V	1A to 1QA	25	MHz
68 1 <u>0</u> / 69 1 <u>0</u> / 70 IN 71 T7 IN 73 IN	Z		į					TUO	GND	Z	-	2A to 2QA	25	=
691 <u>0/</u> IN 70 IN 71 IN 71 IN 73 IN 73			3								-	1B to 1QD	12.5	=
20 L3					OUT		Z		GND			2B to 2QD	12.5	
Z		OUT		н								1A to 1QC	2 65	us
Z				=		OUT			GND	Z	=	2A to 2QC	=	=
73		OUT		=							=	1A to 1QC		=
				=		OUT			GND	Z	=	2A to 2QC	=	=
" 74 GND	Z		OUT								=	1B to 1QD	" 26	=
					OUT		Z		GND		=	2B to 2QD		=
" 76 GND	Z		OUT								=	1B to 1QD		=
				_	OUT		Z		GND		=	2B to 2QD	=	=
" 78 <u>11</u> / IN OUT				=							=	1CLR to 1QA	44	=
62	11/ OI	_									=	1CLR to 1QB		-
- 80		OUT									=	1CLR to 1QC		-
= = =	=		OUT						-	,	= :	1CLR to 1QD		
788						i		00	≥ :	11/		2CLR to 2QA		
						100	<u>117</u> /					2CLR to 2QB		
± 84						OUT			=		=	2CLR to 2QC	=	
" 85					OUT						=	2CLR to 2QD	"	=
													25	MHz
FMAX2												ı	12.5	MHz
Same tests and terminal conditions as for subgroup 9, except $T_c = +125$ °C.	oaroup 9. exc	cept $T_c = +1$	125°C.										2 84	su
													18	=
												1	34	=
													34	=
													292	=
Of Theory Of an enable and the state of the	0,000	T+40	Co											

See footnotes on the next page.

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

1/ Apply $\begin{bmatrix} --2.0 \text{ V min./5.5 V max. prior to test after clear pulse.} \\ 0.0 \pm 0.2 \text{ V} \end{bmatrix}$ --2.0 V min./5.5 V max. pulse prior to test.

 \int L $0.0\pm0.2~\mathrm{V}$ Apply 2 pulses prior to test after clear pulse (see $\underline{1}$).

3

 $\underline{4}$ Apply 4 pulses prior to test after clear pulse (see $\underline{1}$ /).

 $\overline{5}/$ For tests 9 and 13, I_{L3} maximum value pulse 4 mA shall be applied to output QA.

6/ IIL limits shall be as follows:

Symbol	Min	Min/Max limits (mA)	nA)
		Circuit	
	Α	3	В
I _{IL1}	15/38	12/36	16/40
I _{IL2}	35/-1.6	-1.0/-2.4	35/-1.6
IL3	60/-2.4	-1.3/-3.2	60/-2.4

Only a summary of attributes data is required.

/

A = 2.4 V min. and B = 0.4 V max.

8

9/ Output voltages shall be either:

a. H ≥ 2.5 V and L ≤ 0.4 V when using a high speed double comparator, or

b. $H \ge 1.5 \text{ V}$ and $L \le 1.5 \text{ V}$ when using a high speed single comparator.

10/ F_{MAX1} and F_{MAX2} minimum limits specified are the frequency of the input pulse. The output pulse shall be one half the input frequency when measuring QA. The output shall be one fifth of the input frequency when measuring QD. - - 2.0 V min./5.5 V max. pulses to set output high prior to test. 0.0 ± 0.2 V Apply sufficient 11/

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be high \geq 2.0 V; low \leq 0.7 V; or open).

		_	_		_	_	_	$\overline{}$	-1	_			_		_	_	_	_	_		_			_	$\overline{}$		$\overline{}$	-1	_		_	_	_			_	_	_					_	_
	Unit		^	= =	=	=	=		=	-		н	=	=	=	=	=	=	=		=	3/		-		hΑ		=	=		=	=		МA	=	=	=	=	н			=		
	ts	Max	0.4	= =	-		=		=									-1.5	-	н	=	3/	н			20	20	100	100	100	100	400	400	-100	-	=	=	=	н		н	56		
	Limits	Min								2.5	=	н	н	н		-	-					3/	н											-15		=	=	=	н		н			
	Measured terminal		1QA	10B	100	20A	2QB	2QC	2QD	1QA	1QB	1QC	1QD	2QA	2QB	2QC	2QD	1A	1CLR	2A	2CLR	1CLR	2CLR	1A	2A	1CLR	2CLR	1A	2A	1CLR	2CLR	1A	2A	1QA	10B	100	1QD	2QA	2QB	2QC	2QD	Vcc		
14	20	Vcc	4.5 V		=	=	=		=			н	=	=	=	=	=		=	н	=	5.5 V	ш					=				=		н	-	=	=		н		н	=		
13	19	2A												1/		=	=			-18 mA					0.4 V				2.7 V				5.5 V					1/				GND		
12	18	2CLR				2.0 V			=					77	=	-	=			Н	-18 mA		0.4 V		GND		2.7 V				5.5 V							2/	и		н	=		
1	16	2QA				4 mA								-400 mA																								GND						
10 11	41	2QB					4 mA								-400 µA																								GND					
	13	2QC						4 mA								-400 µA																								GND				
8	12	2QD							4 mA								-400 µA																								GND		ö	
4 5 6 7 8 9	10	GND	GND	= =	=		=		=			н				=	=		=	н		н	н					=	=			=		н		=	=	=	н		н	=	are omitted	e omitted.
9	6	1QD			4 mA								-400 µA																								GND						V _{IC} tests	c tests ar
2	8	1QC		4 mA								-400 µA																								GND							25°C and	5°C and V
4	9	1QB		4 mA							-400 µA																								GND								ept T _c = +1	ept T _c = -5
က	4	1QA	4 mA							-400 µA																								GND									oup 1, exce	oup 1, exce
2	က	1CLR	2.0 V		=					2/		и	и						-18 mA			0.4 V		GND		2.7 V				5.5 V				/7	=		-					2/	s as subgro	s as subgro
-	2	1A								1/		н	=					-18 mA						0.4 V				2.7 V				5.5 V		1/		=	=					GND	, and limit	, and limit
Cases	Case 2	Test no.	1	2 8	8	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	Same tests, terminal conditions, and limits as subgroup 1, except $T_C = +125^{\circ}C$ and V_{1C} tests are omitted.	I conditions,
-ST-	883 method		3007			-	-	=		3006		=	=	=		-	-					3009			=	3010		=				=		3011	=	=	=	-	=		=	3005	sts, termina	sts, termina
	Symbol		Vol							VoH								۸ıc				IIII	ILI	211	211	l _{IH1}	H	I _{IH2}	I _{IH2}	IH4	<u>∓</u>	HF2	I _{IH5}	sol								၁၁၂	Same tes	Same tes
	ubgroup		_	:= 25°C																																								3

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued.

		Unit																																	MHz	MHz	2 =	н	н			: :			н			: =	=
•		ts	Max																																	25	3 =	н	н	20 =		: :	44	=	=			: =	=
		Limits	Min																																25	25	1 =							=	=				-
•		Measured terminal	1				/5	il																											1A to 1QA	2A to 2QA	2A to 2QA	1A to 1QA	2A to 2QA	1A to 1QD	2A to 2QD	1A to 1QD	1CLR to 10A	1CLR to 1QB	1CLR to 1QC	1CLR to 1QD	2CLR to 2QA	2CLR to 2QB	2CLR to 2QD
	4	20	Vcc	5.0 V			=	=	=	=			=		: -	=	=	=	=			=	=	=				=	-	-			=		5.0 V	: :	=		=			: :		=	=	=			-
(ر	13	19	2A	۷.	В	B A		Α .	В	٧	В	Α	В	۷ ۷	α <	ζα	Δ Δ	В	A	В	Α	В	A	В	∢ 1	м.	< 0	۵ ۵	c m	ν 4	В	∢ 0	0 60	1		z	z		Z	-	Z	Z	-				/Z		-
or oper	12	18	2CLR	Α.	Κ (m =		=	=	=	=				: =	-		=	=	=			=	=				=	=	=			4	:		GND	GND		GND	- 4	GND	בועט	֝֝֝֝֝֝֝֝֝֝֝֝֝ ֓֞֓						-
Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open)		16	2QA				I	ı	7	_	I	Н	٦	_ _:		= -	,_	ı	I	7	7	ェ	I	_	_ :	Ι:	-		ı	ı	7	_	-	ı		100	TUO		OUT	-			+		-		OUT	-	\dagger
V; low	10	41	2QB				=	-	I	=			7				: =	=	-	7				I			.] =	-	-	I			1						-			+		-		H.	OUT	H
h ≥ 2.0													_	_													1						-							-			ŧ		_		-	+	
be hig	თ 	13	2QC	_		+	-	-	-	-			エ	_		-	-	-	-	7			-	-				-	-	-				-						+		-	<u></u>		_			Ċ	+
d may	∞	12	2QD	, 			=	=	-	=	=		-		=	-	=	=	-	Ι		-	=	=	= :			=	=	=	=	-	-	1		_				_	3	Ę	3		_			_	OUT
ignate	7	10	GND	GND			=	=	=	=	=		=		: =	-	=	=	=			=	=	=				=	=	=	=		=	ڼ	GND	- -	=	=	=		.	: :	-	=	=				=
not des	9	6	1QD	، ب			=	=	=	=					: =	=	=	=	=	I			=	=				=	=	=	= :	- -	-	$4 T_{c} = -55$						OUT	!	00				OUT			
s (pins	2	8	1QC	Ţ					=				Н		: =				=	L		"	=	=				=						=+125°C and T _C = -55°C											OUT				
ondition	4	9	1QB	٦.			=	=	I			н	L		: -	ı	=		=	7	н			I] =	=	-	I			ept T _C = +										OUT					
ninal c	က	4	1QA	١.			I	I	7	٦	I	I	L	_	_	= -		I	I	7	7	I	I	_	: ۱	Ι:	Ι.	_	ı	I	7	_]	- I	up 1, exce	OUT	Ţ	3	DUT					DUT	3					\prod
Terr	7	က	1CLR	Α.	V	m =	=	=	=	=			=		: =	=	=	=	=			=	=	=				=	=	=	=		4	as subgro	GND	CNC	9	GND		GND		GND	z	: -	-			T	Ħ
	-	7		Α.	В (я «		A	В	4	В	Α	В	∢ (n <	ς α	1 4	<u>В</u>	A	В	Α	В	A	В	∢ 1	а.	∢ 0	2 4	c m	<	В	< 0	0 60	nd limits	Z	Z	-	Z		z		z	//	1=	=			+	H
	Cases A,B,C,D	Case 2	Test no.	42	43	44	46	47	48	49	20	51	52	53	54	56	52	28	29	09	61	62	63	64	65	99	69	8 8	20	71	72	73	75	conditions, a	F _{MAX1} 3003 76 <u>6</u> / IN GND	/ <u>7</u> <u>6</u> /	79	80	81	85	83	84	3 %	87	88	88	06	91	93
	MIL-STD-	883 method		3014			=	-	=	=	=	=	=		: =	-	=	=	=	=	=	=	=	=				-	-	-	- 1		-	ts, termina	3003		=	=			.		=	-	=				-
		Symbol		Truth	table	tests																												same tes:	F _{MAX1}	F _{MA} x2	F F	tpHL1	t _{PHL1}	t _{PLH2}	tpLH2	tPHL2	thuis	EJH-F					\dashv
		Subgroup S		. /7 /																																Tc = 25°C				L			_		_				

See footnotes at end of device types 02.

TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).

		Onit		MHz	us	=	=		=		
		its	Max		33	33	63	93	99		
		Limits	Min	25	2			н	=		
		Measured terminal									
	14	20	Vcc								
÷	13	19	2A								
Initial conditions (pins not designated may be nign ≤ 2.0 V, low ≥ 0.7 V, or open)	12	18	2CLR								
// 0	11	16	2QA 2CLR								
۷, 5	10	14	2QB								
	6	13									
lay be	8	12	2QD								
liated	7	10	GND 2QD 2QC								
	9	6	1QD								
	2	8	1QC 1QD		= 125°C.					c = -55°C.	
	4	9	1QB		bgroup 9, except $T_c = 125$ °C.					ibgroup 10, except T _C = -55°C.	
<u> </u>	ε	4	1QA		ıbgroup 9,					bgroup 10	
ב ב	2	3	1CLR		is as for su					is as for su	
	1	2	1A		I condition					I conditior	
	Cases A,B,C,D	Case 2	Test no. 1A 1CLR		and termina					and termina	
	Cases MIL-STD- A,B,C,D	883 method			Same tests			_	_	Same tests and terminal conditions as for su	
		Symbol		F _{MAX1}	t _{PLH1}	t PHL1	t _{PLH2}	tPHL2	tPHL3		
		Subgroup Symbol		10	Tc = 125°C telh1 Same tests and terminal conditions as for sul					11	-

- - 2.0 V min./5.5 V max. to clear input and then to A input sufficient times prior to test to set the output high.)±0.2 V Apply

- - 2.0 V min /5.5 V max. pulse prior to test. 0.0 ± 0.2 V Apply 7

7

I_{IL} limits shall be as follows: 3

		_	Min/Max limits (mA)	: (mA)	
Test			Circuits		
	А	Е	В	D	Ь
11.1	15/38	12/36	16/40	12/36	12/36
11.2	35/-1.60	-1.0/-2.4	35/-1.60	35/-1.60	35/-1.60

A = 2.4 V min. and B = 0.4 V max.4 Output voltages shall be either:

2

a. $H \ge 2.5$ V and L ≤ 0.4 V max when using a high speed checker double comparator, or b. H ≥ 1.5 V and L ≤ 1.5 V when using a high speed checker single comparator.

 $\mathsf{F}_{\mathsf{MAX1}}$ minimum limit specified is the frequency of the input pulse. The output pulse shall be one half the input frequency. 9

- - 2.0 V min./5.5 V max. pulses to set output high prior to test. $0.0\,\pm\!0.2$ V Apply sufficient 7

TABLE III. Group A inspection for device type 03.

		Unit	:	> =	-	=	=	=	=		=		=	=	=	-			=	=	=	=	=	2/	=	=	=	=		μA		=	=			. .	=	=	=	=	MA	=	=	=	=	=		=	-		
•		ts	Max								0.4	н	=						ς: -					2/	=					20	100	20	20	100	50	100	700	300	200	100	-100	2 =	=					н	26		
		Limits	Min	2.5	-	=	=	=	=															2/	=	=	-	=													-15	2 =	=	=	=	=					
•		Measured terminal		10A	10C	101	20A	2QB	2QC	2QD	1QA	1QB	1QC	1QD	2QA	2QB	20C	200	JOLN 101	10LR	9ST9	2CI R	2CLK	1CLR	1CLK	1ST9	2CLR	2CLK	2ST9	1CLR	1CLK	1ST9	2CLR	2CLK	2ST9	1CLR	1CLK	8100	2CLX	2ST9	10A	10B	100	10D	2QA	2QB	2QC	2QD	Vcc		
	16	20	Vcc	4.5 V	-		-	=	=	=	-		=	=	=	-			=	=	=	=	-	5.5 V	=	=		-					=				-	=	=	=	=	=	=	=	=	=		=	-		
•	15	19	2CLK				1/	3,	/4														-18 mA					0.4 V						2.7 V					55.7	2					1/	اض ا	4/		GND		
	4		2CLR				2/			0.7 V					2.0 V	-						-18 mA	+										2.7 V					55 /	-						2/	1=		Q	2/		
or open	13		2QA 2				-0.4 mA			0				\dashv	4 mA 2							7					0						2					4	,						GND				_		
conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open)	12		2ST9 2				0.7 \ -0.		_	2.0 V					0.7 V 4		_				-18 mA							GND	0.4 V						2.7 V					25.5					GND			5.5 V	GND		
√; low ≤							Ö			2.0					_	Αſ					-18	2						ତ	0.						2.					ď	5				_	_	H	5.	Ō		
י 2.0 ≤ ר			2QB					-0.4 mA								4 mA	4																													GND	H		4		
be high	10		2QC						-0.4 mA	А							4 mA																														GND				
ed may	6		2QD							-0.4 mA							,	4 mA																														GND			
signate	∞	10	GND	GND B	=	-	-	=	=			u	=	=	=	-	- -		=	=	=	=	=	=	=	=	-	=				-	=			.	=	=	=	=	=	=	=	=	=	=		=	=	ted.	Ġ.
s not de	_	6	1QD			-0 4 mA	5							4 mA																														GND						s are omit	are ormice
ns (pin	9	8	1QC		-0 4 mA								4 mA																														GND							d V _{IC} test	VIC tests
conditio	Ω	7	1QB		-0.4 IIIA							4 mA																														GND	!							125°C an	35 C allu
a	4	5	1ST9	0.7 V		207	2:0 4				0.7 V	н		=						10 00	-101114				GND	0.4 V						2.7 V					E 5 1/	0.0			GND	=	н	5.5 V					GND	9pt I _C = +	- = 0 1 1de
	က	4	10A	-0.4 mA							4 mA																														GND	9							_	up 1, exce	ייאס יו לום
	7	3	۲.	/2		7.2.0					2.0 V		=	=					10 00	AIII OI -				0.4 V	GND					2.7 V						5.5 V					2/) =	=	GND					2/	as subgro	as sungio
	-	2	1CLK	7	رة 4													4	- IS IIIA						0.4 V						2.7 V					;	2.0 \				1	· /c	/4	1					GND	and limits	Mu mins
	Cases E, F		Test no.	- 0	7 65	9	2	9	7	8	6	10	11	12	13	14	15		Ť	0 0	20	21	22	23			56	27	28			31	32	33	34		+	à c	30	40	41	42	43	44	45	46	47	48	49	Same tests, terminal conditions, and limits as subgroup 1, except $T_c = +125^{\circ}C$ and V_{1C} tests are omitted. Same tests terminal conditions, and limits as substruin 1, except $T_c = -55^{\circ}C$ and V_{1C} tests are omitted.	Oliditions, c
•	MIL-STD-	883 method	H	3006		_	_	=	-	-	3007	=	-		= :			:				<u> </u>		3009	=	-	-	=		3010								-	=	=	3011	: =	_	_	=	=	_	=	3005	terminal c	(EIIIIIIai v
	Ξ	Symbol	_	N _{OH}							V _{OL}							-	ر اد							1 -		211	1111		I _{IH2}	l _H	l _H	래	Ħ	¥	12	¥ :	4	£	-							1	lcc .	ame tests	dille tests
		Subgroup			D = 25°C													1									1	1	<u> </u>								1			1	1									Z 6.	

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; low $\leq 0.7 \text{ V}$; or open).

		Unit																									MHz	MHz	ns	=	=		.		=		=	=	=	=	=			=	-		MH ₂	71 10	2 =	=	=	=	=	=	
			Max																										44	44	25			- C	S =		=	44		=	=			=		141	F	57	33	3 6	32	14	26	53	
		Limits	Min	⁄8I																							25	25	2	=	=				=		=	=	=		=			=	=		25	3 0	1 =	-	=	=		=	
		Measured terminal																									CLK to 1QA	to 2QA	ST9 to 1QA	to 2QA	to 1QA	CLK to 2QA	to 1QA	CLK to 2QA	2000	CLK 10 20C	to 2QC	to 1QA	CLR to 1QB	to 1QC	to 1QD	to 20A	to 2QB	10 ZQC	10 2QD	ST9 to 20B	2 2		1			<u> </u>			
			Т	>	1	1	1	I			1	1	I									1						CLK	ST9	ST9	CK	SE	CLK	2 2 2 3	ב ב ב	2 2	S K	CLR	CLR	CLR	CLR	CLR	CLR	2 5	Z E	S LS	5								
-	2	20	N	5.0 V	=	=	-	=	=	=	=	=	-	=	=	=	-	=			=	=	=	=	=		5.0 V	=	=	=	-		·		=	=	=	=	=	=	=	•		=	-	=									
,	2	19	2CLK	∢ ι	א <	ζα	۵ ⊲	ς α	Δ 4	α.	Δ Δ	(M	Δ	a	4	В	A	В	Α	В	A	В	4	-				Z				Z	-	Z	2	≧	Z					10/		=		10/	Ž								
en).	<u> </u>	18	2CLR	∢ •	∢ 0	= ۵	=	=	=	=	=	=	=		=	=	=	=			=	=	٧	В	В			GND		2/		GND	9	GND	CINC	GIND	GND					∠ :		=		GND	5								
; or ope	2	17	2QA	, ,		п	Ξ Ξ	= -		ıΠ	= 1		-	т	I	Γ	7	Н	Н	Г	L	I	L	L	Н			OUT		OUT		OUT	H	OUT								OUT													
l erminal conditions (pins not designated may be high ≥ 2.0 V; low ≤ 0.7 V; or open).	7	15	2ST9	В=		=	=	=	=	=	=		=	=	=	=	=	=				=	=		Α			GND		z		GND		GND	CINC	GIND	GND					GND		=		Z	2								
, V;	=	41	2QB	_ -	: =	-	=	ı	=		=		=	=	=	I	-		=	7	=	=	=																			ŀ	OUT			П	5								
gn ≥ 2.0	2	13	2QC		: =	-	_	-	=	-	-	ī	: =	-	-	_	_			7	-	=	_												E	100	DUT						E	-											
y be hig		12	2QD 2												-	_				I		_	7		н								-		()	0							+	5										
ted ma			+	H			l	l	l		Ĺ										_		_	_			9		_						l								1	5	T										
lesigna		10	+	GND		_	_	-	Ī	-	-	-	-		_					_	-	-	-	-			GND	-	-	-					_	-	-				- -		1	-	-										
s not c		6	1QD		-	-	-	=	=	=	=	-	-	-	=	-	-	-		I	=	=	_	_	エ	= -55°C.								+		1				_	DO_		1						1050	25.					ς. C.
nos (pir	D	∞	100	H	=	=	-	=	=	=	=	Ι	=	=	=	=	-	=		7	=	=	=	=	=	25° C and T_{c} =								5	3	Ċ)			OUT			-						- - - -	+ = O = 1					$T_{\rm C} = -5$
condition	ר	7	1QB	H	=	=	=	I	=	=	=		=	=	=	I	-	=	=	٦	=	=	=	=	=	c = +125°													OUT						Ē	00			200	a, excel					except
rminal	t	2	1ST9	а =	=	=	=	=	=	=	=	=	=	=	=	=	=	=			=	=	=		Α	tests at T	GND		Z		GND	9	GND		GIND	GND	5	GND	=	=	=				2	≧			9	dnoabar					aroup 10
١	2	4	1QA	_ :	=	I	= =	-		ıI	= =	-	-	ı	I	٦	7	I	I	٦	_	I	_	٦	I	bgroup 7	OUT		OUT		OUT	į						OUT											10,00	as ior si					for sub
c	4	က	1CLR	Α,	∢ 0	Δ=	=	=	=	=	=	=	=		=	=	=	=			=	=	A	В	В	as for su	GND		2/		GND		GND		GIND	GND	5	Z		=	=					GIND			od citi Pod	nalitions					limits as
•	-	2	1CLK	∢ (ם <	ζ α	۵ ۵	ς α	Δ Φ		Δ Δ	(M	۷	<u>а</u>	A	В	Α	В	Α	В	A	В	Α	-	=	and limits	Z				Z	-	Z	2	2	Z		10/		=	=				/01) I			وامان	ninal co					ins and
	E, F	Case 2	est no.	20 <u>7</u> /	51	22	3 2	t 18	3 25	24	200	20 62	9	61	62	63	64	92	99	29	89	69	20	71	72	Same tests, terminal conditions, and limits as for subgroup 7 tests at $T_{\rm C}$ = +1	73 9/	74 9/	75	9/	11	78	62	80	0 0	83	84	82	98	87	88	89	8 8	- G	38 88	25 25	5		4 600	Same tests and terminal conditions as for subgroup 9, except $1_{c} = +1_{c}$ 5.0.					Same tests, terminal conditions and limits as for subgroup 10, except $T_c = -55^{\circ}C$
	MIL-STD-	883 method	<u> </u>	3014				_		<u></u>		<u></u>	_	_	_	_	_	_		Ш -						erminal a	03	Fig. 5	_	-	-		 		-			-		_	=	 	 	-					0+00+ 0m	sisei eur					termina
	MIL-			_		210																				ne tests, t	1X1 3C	4	Ŧ.	至	Ŧ	Ξ	<u>[</u>]	17	오	건 :	12	1.3									1.4	AX1			Ţ.	길 :	1 2	L4	ne tests,
F		up Symbol		Truth																								5°C FMAX1	t _{PLH4}	t _{PLH4}	tPLH1	₽.	tPHL1	±.	tPLH2	tell2	ţ.	tpHL3							-	TPHL4		T WAX1	_	d ,	PHL	tell 2	tPHL3	t _{PHL}	San
		Subgroup		7 -	1c = 25°C	òι																				8	6	Tc = 25																			10	Tr = 125°C	2						11

See footnotes on next page.

1/ Apply -2.0 V min./5.5 V max. prior to test after clear pulse. $0.0 \pm 0.2 \text{ V}$ 2/ Apply -2.0 V min./5.5 V max. pulse prior to test. $0.0 \pm 0.2 \text{ V}$

- 3/ Apply 2 pulses after clear pulse (see 1/).
- $\underline{4}$ / Apply 4 pulses after clear pulse (see $\underline{1}$ /).
- 5/ I_{IL} limits shall be as follows:

Symbol	Min	/Max limits (ı	mA)
		Circuit	
	Α	Е	В
I _{IL1} (CLR)	15/38	135/37	16/40
I _{IL2} (ST9)	16/40	135/37	16/40
I _{IL3}	35/-1.6	-1.0/-2.4	35/-1.6

- 6/ Only a summary of attributes data is required.
- 7/ A = 2.4 V min. and B = 0.4 V max.
- 8/ Output voltages shall be either:
 - a. $\,H \geq 2.5\,\,\text{V}$ and $L \leq 0.4\,\,\text{V}$ when using a high speed double comparator, or
 - b. $H \ge 1.5 \text{ V}$ and $L \le 1.5 \text{ V}$ when using a high speed single comparator.
- $\underline{9}$ / F_{MAX1} minimum limits specified is the frequency of the input pulse. The output pulse shall be one half the input frequency.

 $\underline{10}/$ Apply sufficient $$--2.0\ V$$ min./5.5 V max. pulses to set output high prior to test. $0.0\pm0.2\ V$

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Department of Defense Agency, or within the Military Department's System Command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Complete part number (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - I. Requirements for "JAN" marking.
- 6.3 <u>Superseding information.</u> The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 <u>Abbreviations, symbols, and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

F _{MAX}	
GND	Ground zero voltage potential
I _{IN}	Current flowing into an input terminal
V _{IC}	Input clamp voltage
V _{IN}	Voltage level at an input terminal

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device	Generic-industry
type	type
01	54LS390
02	54LS393
03	54LS490

6.8 <u>Manufacturers' designation.</u> Manufacturers' circuits, which form a part of this specification, are designated with an "X" as shown in table IV herein.

TABLE IV. Manufacturer's designator.

	Manufacturer				
Device	Texas	Signetics Corp.	Motorola	Fairchild Co.	National
type	Instruments		Inc.		Semiconductor
	Circuit A	Circuit B	Circuit D	Circuit E	Circuit F
01	Х	Х		Х	
02	X	X	Х	X	X
03	Х	Х		Х	

6.9 Changes from previous issue. Asterisks are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians: Preparing activity: DLA - CC

Army - CR Navy - EC Air Force - 11 (Project 5962-1977) DLA - CC

Review activities:

Army - MI, SM Navy - AS, CG, MC, SH, TD Air Force - 03, 19, 99

STANDARDIZATION DOCUMENT IMPROVEMENT PROPOSAL

INSTRUCTIONS

- 1. The preparing activity must complete blocks 1, 2, 3, and 8. In block 1, both the document number and revision letter should be given.
- 2. The submitter of this form must complete blocks 4, 5, 6, and 7, and send to preparing activity.
- 3. The preparing activity must provide a reply within 30 days from receipt of the form.

NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

contractual requirements.				
I RECOMMEND A CHANGE:	DOCUMENT NUMBER MIL-M-38510/327B	2. DOCUMENT DATE (YYYYMMDD) 2003-09-15		
3. DOCUMENT TITLE MICROCIRCUITS, DIGITAL, BIPO	LAR, LOW-POWER SCHOTTKY TTL, (COUNTERS, MONOLITHIC SILICON		
4. NATURE OF CHANGE (Identify paragrap	oh number and include proposed rewrite, if po	ossible. Attach extra sheets as needed.)		
5. REASON FOR RECOMMENDATION				
6. SUBMITTER a. NAME (Last, First Middle Initial)	b. ORGANIZATION	N		
c. ADDRESS (Include Zip Code)	d. TELEPHONE (In (1) Commercial (2) DSN (If applicable)	7. DATE SUBMITTED (YYYYMMDD)		
8. PREPARING ACTIVITY		·		
NAME Defense Supply Center, Columbus	b. TELEPHONE (In (1) Commercial 6			
c. ADDRESS (Include Zip Code) DSCC-VA P. O. Box 3990 Columbus, Ohio 43216-5000	Defense Standar 8725 John J. Kin Fort Belvoir, Virgi	IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT: Defense Standardization Program Office (DLSC-LM) 8725 John J. Kingman Road, Suite 2533 Fort Belvoir, Virginia 22060-6221 Telephone (703)767-6888 DSN 427-6888		